
WG#5: WebBased Design of Complex Systems A Moving Target

Report Summary

Design of Complex <u>Microsystems</u>

- CY2000 over 100M transistors/chip
- Mixed Disciplines (analog, digital, MEMS) both on and off chip
- Noone can "own" all the expertise needed to meet its needs in microsystem design
- Rapid response in design as well as design system
- Less effective at technology transfer from research because of the current infrastructure

Addressing the Challenges

Challenges

- Interoperability & collaboration at all levels
- Performance ("time to results")
- Validation & trust of tools and designs (leads to re-use)
- Abstraction & modelling
- Capturing the rationale for designs
- Data volume / latency issues
- Security/Protection

Addressing the Challenges

- Novel Approaches
 - Use of Inter(tra)net technology
 - Knowledge sharing over distance
 & time
 - Access to expensive / unique resources
 - Distributing both the capabilities and the problem

1996 DARPA ITO General PI Meeting, Dallas, TX

Projected Outcome

- Short Term
 - Demostrate the reults of microsystems research in a national-scale, web-based experiment
 - Identify the research challenges in the design of complex microsystems

Projected Outcome

- Longer Term
 - Develop a scaleable architecture for microsystems integration
 - Solve a significant and complex DoD design problem
 - Act as real "user" for many of the collaboration/network/distributed technologies

Investment Strategy

- DARPA, Industry Support
 - Existing players are not motivated to solve this problem
 - Industry is a natural and necessary player in this effort
- What if we did not do this?
 - DoD cannot distinguish itself from a pure COTS model without these technologies
- Optimal Scale of Efforts
 - Relatively small effort leveraging many other investments PA ITO General PI Meeting, Dallas, TX